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ABSTRACT
Precise crash triage is important for automated dynamic testing
tools, like fuzzers. At scale, fuzzers produce millions of crashing
inputs. Fuzzers use heuristics, like stack hashes, to cut down on
duplicate bug reports. These heuristics are fast, but often imprecise:
even after deduplication, hundreds of uniquely reported crashes
can still correspond to the same bug. Remaining crashes must be
inspected manually, incurring considerable effort. In this paper we
present Semantic Crash Bucketing, a generic method for precise
crash bucketing using program transformation. Semantic Crash
Bucketing maps crashing inputs to unique bugs as a function of
changing a program (i.e., a semantic delta). We observe that a real
bug fix precisely identifies crashes belonging to the same bug. Our
insight is to approximate real bug fixes with lightweight program
transformation to obtain the same level of precision. Our approach
uses (a) patch templates and (b) semantic feedback from the pro-
gram to automatically generate and apply approximate fixes for
general bug classes. Our evaluation shows that approximate fixes
are competitive with using true fixes for crash bucketing, and sig-
nificantly outperforms built-in deduplication techniques for three
state of the art fuzzers.
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1 INTRODUCTION
The advent of large scale fuzzing services, such as Google’s OSS-
Fuzz [1, 45] and Microsoft’s fuzzing service [9], attest to the effec-
tiveness of automatic bug finding tools. When operating at scale,
accurately identifying unique bugs is critical for (a) reducing time-
consuming manual debugging efforts [14, 41], (b) characterizing
the effectiveness of automated bug-finding tools [12, 14, 37, 42, 48],
and (c) ranking interesting crashing test cases [14]. However, one
outstanding challenge in effectively deploying automated fuzzing
techniques is accurately identifying unique bugs during crash triage.
Fuzzers often generate thousands of crashing inputs that ultimately
correspond to the same bug [14], and the sheer number of crashing
inputs preclude manual inspection. This is a hard problem, and an
area of active research [17].

Automated crash triage techniques seek to approximately bucket
multiple crashing (but ultimately equivalent) inputs [14, 17, 37, 41],
to reduce the number of redundant bug reports an engineer must
inspect by hand. At a high level, automated testing tools like fuzzers
and symbolic executors typically use tool-specific, heuristic buck-
eting strategies. Both research and industry standard triage tech-
niques have known limitations [17, 42]. Techniques may assume
“best-effort” hardcoded values (e.g., the number of calls to con-
sider in a call stack [2]) or require tool-specific instrumentation for
feedback-driven approaches [3]. The varied sensitivity of such ad
hoc techniques result in imprecise bug identification that can fail
in two ways. Overapproximation occurs when multiple crashing
tests caused by a single bug incorrectly bucket to more than one
unique bug (i.e., duplicate bug reports). Underapproximation occurs
when crashing tests due to multiple unique bugs are put in the same
bucket [41, 48] (i.e., missed unique bugs).

Stack hash [37, 48] and branch sequence [7] techniques used in
state-of-the-practice fuzzers [2, 3, 7] can suffer from both over- and
underapproximation [41, 48]. Such techniques seek to determine
bug uniqueness as a function of, e.g., crashing input [48], program
traces [7, 17], program crash state [3], or a combination of these [14].
Recent (and more sophisticated) research advances propose to more
precisely classify unique bugs using symbolic analysis [41], machine
learning on crashing inputs [14], and backward taint analysis on
program traces [17]. While such approaches promise more accurate
bucketing by considering semantic program behavior (e.g., [17,
41]), their accuracy depends on sensitivity to a general semantic
trait (e.g., symbolic branch uniqueness) and can still misbucket
bugs. Built-in or hardcoded techniques further struggle to integrate
specialist knowledge that can produce more accurate output for
classes of bugs.1

1https://twitter.com/azonenberg/status/966738179486134272
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We present a radically new approach to identifying unique bugs
in the context of fuzzing: by modifying the program itself. Our
insight is that bugs can be characterized by a semantic transfor-
mation on the program under test. For example, patching one of
two buffer overflows in a single execution can distinguish crashes
unique only to the second. Further, a fix can stop the same logical
bug from manifesting on multiple unique execution paths.

Our insight draws on the fact that fixing the program offers a
precise way to associate crashing inputs with a unique bug, since
correct fixes should neutralize all crash-inducing inputs associated
with the bug in question.

We introduce Semantic Crash Bucketing, which maps crashing
inputs to bugs as a function of change (delta) in program semantics,
where the delta approximates fixing the root cause of the bug. In
general, root cause analysis is hard [27, 39], and automatically
fixing bugs is an open problem [30]. However, existing work in
automated program repair (APR) does demonstrate that programs
can profitably be transformed to automatically improve quality [29,
34, 36]. The motivation behind our approach is that changing a
program with approximate fixes can accurately and automatically
constrain crashing behavior in a way that mimics real program
fixes to detect unique bugs in fuzzer output.

Semantic Crash Bucketing contrasts with the usual sense of
seeking program fixes with respect to a correctness oracle (such
as tests [29, 34]). However, although the objective of Semantic
Crash Bucketing is different from APR, it can similarly suffer from
program transformations that overfit to the success criterion. For
example, suppose a program contains more than one unique bug,
each with independent fixes. Inserting exit(0); at the beginning
of a program will satisfy the criterion of neutralizing all crashes,
but will associate (and underapproximate) all unique bugs with a
single fix. To be effective, program transformations must therefore
have constrained semantic effects to precisely identify unique bugs
under Semantic Crash Bucketing.

We propose a rule-based approach using fix templates to con-
strain the semantic transformations for crash bucketing. Our ob-
servation is that common bugs typically detected by fuzzers (e.g.,
buffer and integer overflows, null dereferences, etc.) have semantic
properties that are amenable to a rule-based application of gen-
eral fix templates (as found in analog APR work, e.g., [16, 26, 46]).
At a high level, rule-based application of fix templates can inte-
grate specialist knowledge of bug semantics into the triage process
to produce more precise output. We demonstrate Semantic Crash
Bucketing for buffer overflows and null dereferences on real-world
bugs in the CVE database [4]. Buffer overflows and null derefer-
ence vulnerabilities account for some of the most common software
security weaknesses [31] and are frequently discovered through
fuzzing [7, 42, 45]. Our contributions are as follows:

• Semantic Crash Bucketing, a novel technique to auto-
matically identify unique bugs as a function of changing
a program’s semantics. Semantic Crash Bucketing groups
crashing inputs by applying program transformations to the
program under test. We use Semantic Crash Bucketing to
identify imprecise crash reporting in fuzzers, and to compare
the effectiveness of developer-written fixes and approximate
fixes.

• Approximate fixes. We present an automated procedure
using bug-fixing patch templates and rule-based application
of patches to approximate correct fixes. In general, correctly
and automatically fixing a program is hard. The key insight
is that the effectiveness of approximate fixes is competitive
with using correct fixes for identifying unique bugs. We in-
stantiate Semantic Crash Bucketing with approximate fixes
for real-world bugs commonly found by fuzzers: buffer over-
flows and null dereferences and demonstrate effectiveness.

• Empirical evaluation. We comparatively evaluate Seman-
tic Crash Bucketing using developer-written fixes and ap-
proximate fixes with deduplication techniques of three state-
of-the-art fuzzers (AFL-Fuzz [7], CERT BFF [2], and Hong-
gfuzz [3]). We show with Semantic Crash Bucketing that
approximate fixes associate crashing inputs precisely (i.e.,
no under- or overapproximation) for 19 out of 21 bugs in
6 projects compared to ground truth fixes. We also show
that bucketing with approximate fixes is more precise than
built-in deduplication of all three fuzzers. Our results are
available online.2

2 MOTIVATING EXAMPLE
AFL-Fuzz is known to find null dereference and memory corruption
bugs in even well-tested software [5]. Consider one such bug found
in SQLite: a null dereference that was later fixed by the patch in List-
ing 1a. The sqlite3WalkSelect function (Line 7) walks the expression
tree of a SQL select statement. The return value of sqlite3WalkSelect
can indicate an error in a SELECT ... FROM ... statement, but the re-
turn value is not checked. This missing check can lead to a null
dereference downstream during execution due to an invalid FROM

clause. The fixing commit message says:�
Make sure errors from the FROM clause of a SELECT cause
analysis to abort and unwind the stack before those errors
have a chance to mischief in the "*" column-name wildcard
expander.� �
The developer thus checks the return value of sqlite3WalkSelect

and aborts, avoiding any null dereferences downstream (Line 8,
Figure 1a).

Current fuzzers and symbolic executors can find many different
crashing inputs that trigger bugs like these. For example, slight
modifications in a crash-inducing SELECT...FROM... input could fol-
low a different sequence of calls or branches, but still trigger the
same bug. Existing techniques use generic heuristics to identify
unique crashes from a set of many generated inputs. Call stack
hashes [2, 3, 12, 20, 37] are predominant; instrumentation-based
fuzzers may use program execution paths sensitive to branch se-
quences [3]. These heuristics are fast and moderately effective, but
remain imprecise, because they are sensitive to inputs that vary
program execution in a way that is unrelated to the actual bug. De-
pending on the heuristic and inputs, fuzzers report many duplicate
crashes as unique.

Our approach defines bug uniqueness in terms of program trans-
formation. The motivation is that fixing a bug (as the developer did
in Figure 1a) ideally “catches” all crashing inputs related to the bug,

2https://github.com/squaresLab/SemanticCrashBucketing

https://github.com/squaresLab/SemanticCrashBucketing
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1 --- a/src/select.c

2 +++ b/src/select.c

3 @@ -4153,7 +4153,7 @@ static int selectExpander(Walker

*pWalker, Select *p){

4 /* A sub-query in the FROM clause of a SELECT */

5 assert( pSel!=0 );

6 assert( pFrom->pTab==0 );

7 - sqlite3WalkSelect(pWalker, pSel);
8 + if( sqlite3WalkSelect(pWalker, pSel) ) return

WRC_Abort;
9 pFrom->pTab = pTab = sqlite3DbMallocZero(db,

sizeof(Table));

10 if( pTab==0 ) return WRC_Abort;

(a) SQLite: a developer fix that avoids a null dereference.

1 --- a/src/resolve.c

2 +++ b/src/resolve.c

3 @@ -164,6 +164,9 @@ int sqlite3MatchSpanName(const char *

zSpan, const char *zCol, const char *zTab, const char

*zDb){

4 int n;

5

6 + if(zSpan == NULL) {
7 + exit(101);
8 + }
9 for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){}

10 if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n

]!=0) ){

11 return 0;

(b) SQLite: autogenerated approximate fix for the null dereference.

Figure 1: Two fixes for a null dereference in SQLite 3.8.9. The actual fix is shown on the left (commit 10c478e). Our approach
automatically generates the patch on the right.

irrespective of call stacks or other program execution paths.3 The
challenge is that finding true fixes is hard. Automated root cause
analysis is difficult and expensive [27, 33], especially for bugs like
this one, that requires deep reasoning.

Our primary insight is that simpler approximate fixes can substi-
tute for real fixes to precisely bucket crashing inputs. For example,
Figure 1b presents an autogenerated approximate fix for the same
SQLite null dereference bug. Semantically, it safely aborts the pro-
gram if zSpan are null. It turns out that the SQLite bug leads directly
to zSpan being null at this later program point (i.e., when the input
statement contains a * expander described in the commit message).
The approximate patch precisely “catches” similar crashing inputs
like the actual patch.

Our approach uses syntactic templates and configurable “seman-
tic cues” to generate such patches. Semantic cues act as predicates
for applying patch templates. A concrete example is “Checkwhether
any dereferenced variables at program point p is null. If so, return
the variable name”. A patch template can then be instantiated with
the specific variable. In general, templates and rules for patch gen-
eration and application are specified just once per bug class (e.g.,
null dereferences and overflows.). We describe the procedure fully
in Section 4, but provide a brief summary here for null derefer-
ences. The patch template for null dereferences checks whether a
variable is null, and safely aborts the program if so. This template
contains a “hole” for the variable to check, and must be instantiated
with a concrete variable. We configure the procedure to check for
a semantic cue: whether variables are null at the point of crash
using a debugger environment. In this case, our procedure finds
that zSpan[n] could be a problematic dereference, and dynamically
checks whether zSpan is null when the program crashes. Variable
zSpan is found to indeed be null, generating the patch in Figure 1b.
The patch is validated to confirm that the modified program no
longer crashes for the input. That is, the autogenerated patch ap-
proximates the real fix effectively because it discovers and fixes the
related null dereference triggered downstream during execution
even though it does not deeply address the root cause.

3And, under correctness assumption of the fix, any other crashing input is associated
with a different unique bug.

In essence, applying lightweight program transformation re-
duces noise compared to typical deduplication heuristics by focus-
ing on the semantic properties of the bug. At the expense of slight
up front cost per bug class, our approach provides a configurable
mechanism that is sensitive to the semantic property of the bug to
more precisely identify uniqueness.

A configurable approach is important: bugs exhibit different
semantic traits to which program transformation must be sensitive.
For example, null dereferences cause an immediate program crash
which allows us to identify possible causes at the point of crash.
On the other hand, buffer overflows typically only cause a crash
once corrupted memory is accessed, and not when the overwrite
actually occurs. Handling overflows therefore requires a different
strategy (see Section 4).

Fuzzers can also underreport unique bugs. For example, under a
naïve call stack approach, two unique null dereferences in a single
function will be reported as just one unique bug. Our technique
can identify each bug uniquely via independent program transfor-
mations.

3 SEMANTIC CRASH BUCKETING
This section introduces Semantic Crash Bucketing (SCB). Semantic
Crash Bucketing is a general method for bucketing crashes in terms
of program transformation (i.e., a semantic delta). Semantic Crash
Bucketing can be performed with arbitrary program transforma-
tions. Our goal in this section is to develop a way for determining
how well approximate fixes identify unique bugs compared to (a)
ground truth fixes and (b) existing methods in fuzzers. We now in-
troduce the problem definition and application of SCB for detecting
inaccurate error reports.

3.1 Problem Formulation
A bug in our context is a software flaw that leads to an error (i.e.,
undesirable program behavior); an error is a deviation from ex-
pected behavior defined by a test oracle. We address on the types of
bugs typically found by fuzzers, namely those that induce runtime
crashes. For such bugs, the error oracle is signaled by a runtime
failure: a crash results in SEGFAULT.
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Semantic Crash Bucketing groups crashing inputs according to
a program change that nullifies those inputs (i.e., cause the inputs
to no longer crash the program). Thus, a true fix for a unique bug
maps all crashing inputs for that bug to a unique bucket. Group-
ing crashes as a function of known fixing patches is a de facto
method for establishing ground truth classification of fuzzer crash
reports [14]. We use this idea to develop a general method of iden-
tifying misbucketing (e.g., duplicate crash reports) arising from
approximate fixes and fuzzers.
Ideal Bucketing.Webegin by defining an Ideal Bucketing, where
the correct fixing patches for unique bugs in a program are known
or presumed. This definition represents ground truth to measure the
effectiveness of our approach (Section 5). The intuition is straight-
forward: some known or presumed program transformationTi fixes
all crashing input associated with a bug i , and only those inputs.
Ti is by construction the theoretically ideal oracle transformation
that correctly fixes the bug i and thus all of the crashing behavior
it can cause. In practice, we may think of such a transformation as
a correct developer-written patch for a single bug.

We express Ideal Bucketing in terms of unique bugs, the crashes
they induce, and their fixes. Let i ∈ n be the identifier for a unique
bug i of n unique bugs in a program P . A unique bug i is associated
with a set of one or more crashing inputs, which we denote by
a bucket bi . Let Ti : P → P be a function that applies a correct
fix to the program P , for unique bug i . A correct fix Ti fixes all
crash-inducing inputs bi due to i , but none of the crashes due to a
different bug j with crashing inputs bj .

We express all buckets containing crashing inputs uniquely fixed
by knownTi , i ∈ n as disjoint partitions B = b1 ⊎ · · · ⊎bn under the
correctness assumption of Ti . For a particular Ti , ideal bucketing
implies:

∀ bi ∈ B,

∀ bj ∈ B \ bi s.t.

∀ ci ∈ bi , ⟨Ti (P), ci ⟩ ⇝̸ crash

∀ c j ∈ bj , ⟨Ti (P), c j ⟩ ⇝ crash

Where ⟨Ti (P), c⟩ ⇝̸ crash expresses that the program P under
transformation of fix Ti and executed on crashing input c does not
induce a runtime crash. Ideal bucketing for a bug i expresses
that the fix Ti associates non-crashing behavior with all previously
crashing inputs c ∈ bi , but not any crashes for other buckets bj ∈
B \ bi .4

One subtlety of Ideal Bucketing is the special case where a
single input may trigger multiple bugs. For example, two separate
buffer overflow copies (i.e., two bugs b1 and b2) along the same
execution path may overwrite the stack (twice) in a single execu-
tion. From our definition, neither corresponding fix T1 nor T2 will
bucket the crashing input. However, we can extend the definition to
account for composition of transformations T1 and T2 to place such
a crashing input into a separate bucket that represents a composite
fault. Although conceptually useful, we focus on logically discrete
fixes (based on developer patches) to associate crashing inputs
with bugs so that it is tenable to experimentally compare real and
approximate fixes. In practice, fuzzer-generated inputs typically

4Note: if B \ bi = ∅ then the constraint on bj holds vacuously.

trigger single bugs, and our results corroborate this observation.
Classifying composite faults is an open problem [22] and we leave
the consideration of using program transformation for classifying
such faults to future work.

3.2 Detecting Duplicates
One goal in fuzz triaging is to approximate the ground truth ideal
bucketing strategy, minimizing overhead and confusion for the
engineer using a fuzzer to identify defects. Approximations are
done by, e.g., unique call stack hashes or unique branch sequences.
Such approximations can fail, however, leading to misbucketing
of crashing inputs. Misbucketing can be classified into two cate-
gories [41]:

(1) duplicate bug reporting and
(2) suppressed unique bugs: unreported unique bugs that are

missed by crash bucketing (or “over-condensing”).
In this paper, we deal with the first case of duplicate bug reports.

We now describe how we detect duplicate bug reports in terms of
fixing transformations Ti , where Ideal Bucketing does not hold.
Consider two example bug reports produced by a fuzzer: bug 1 with
a crash bucket b1 = {c1} containing crashing input c1, and bug 2
with b2 = {c2}. We say that b2 is a duplicate bug report if c2 actually
crashes the program due to bug 1. That is, the correct bucketing
implies b1 = {c1, c2} and no bug 2 should be reported. Duplicate
misbucketingwrongly implies bug uniqueness, increasing the triage
burden of engineers processing fuzzer output.

In an imprecise bucketing B, duplication occurs when the follow-
ing is true for a particular Ti :

∃ bi ∈ B,

∃ bj ∈ B \ bi s.t.

∀ c ∈ bi , ⟨Ti (P), c⟩ ⇝̸ crash

∃ cdup ∈ bj , ⟨Ti (P), cdup⟩ ⇝̸ crash

That is, some crash cdup ∈ bj actually fixed by Ti is considered a
crash for a different unique bug j, belonging to bj . By our correct-
ness assumption of Ti , any crash fixed by Ti must belong to bi for
ideal bucketing to hold. Note that if c is the only crash in bj then
a unique bucket is implied, resulting in a duplicate report of bug i
as some other bug j that should not exist.

In summary, given correct Ti ’s, we can determine ground truth
Ideal Bucketing and detect duplicate bug reports as deviations
from Ideal Bucketing.

3.3 Semantic Crash Bucketing Procedure
Our formulation leads to a straightforward procedure for identi-
fying misbucketing in fuzzers. Figure 2 illustrates the process. A
Fuzzer takes a program P and input to generate a set of crashes
C = c1, . . . , cn 1 . The fuzzer reports a set of crashing input accord-
ing to its built-in method for identifying unique bugs. We represent
the fuzzer output as a disjoint set of unique bugs indexed by I :
Bfuzzer =

⨄
i ∈I bi 2 .

As a matter of practicality, a fuzzer does not, by default, preserve
all generated crashing inputs. Instead, a fuzzer discards any crashing
input it believes triggers a bug it has already seen, and typically
outputs one representative crash for each bug/bucket it considers
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unique. This is expressed as Bfuzzer = (b1 = {c1}) ⊎ (b2 = {c2}) ⊎
· · · ⊎ (bn = {cn }).

Figure 2: The Semantic Crash Bucketing Procedure.

The function SCB takes as input the set of crashesC and a ground
truth fix Tj 3 . For a single fix Tj , SCB partitions the set of crashes
C into a disjoint set bj ⊎ br est by running each crash c ∈ C on the
modified program Tj (P). The set bj contains all inputs fixed by Tj ,
as in the Ideal Bucketing case, while br est contains all inputs
that still cause Tj (P) to crash. The final step 4 tests if the crashes
in a nonempty bucket bj distinguished byTj is contained in Bfuzzer.
Because Bfuzzer contains a partition of unique bugs with just one
representative crash in any bi , there are only two outcomes for
the test bj ∈ Bfuzzer: (1) |bj | = 1 and is equal to some bi in Bfuzzer,
implying that Bfuzzer precisely buckets the crashing input for a bug
j, or (2) |bj | > 1 implying that the crashes in c ∈ bj are partitioned
across multiple buckets in Bfuzzer, implying that the fuzzer reported
duplicate bugs. For simplicity, Figure 2 illustrates the procedure
for a single fix Tj that fixes at least one crashing input in C . Ideal
Bucketing checks that every crashing input inC can be fixed (and
bucketed) uniquely by one or more fixes T .

4 GENERATING APPROXIMATE FIXES
This section explains how we instantiate our approach to perform
SCB using approximate fixes. In practice, a developer fix provides the
best assurance of correctly fixing a known bug, which we accept
as ground truth T for SCB. However, our goal is to reduce the
burden on developers to triage fuzzing output when the crash’s
fix is not immediately known. In general, fixing arbitrary bugs
automatically is hard [30]. Our core insight is that an approximate
fix T̂ is competitive with using T to identify unique bugs under
SCB. In our approach, T̂ is an automatic production encoding the
semantic properties necessary to fix possible crash-inducing bugs.
To demonstrate, we instantiate SCB with approximate fixes on null
dereferences and buffer overflows in C programs.

4.1 T̂ Production.
At a high level, T̂ is a production of a function G(P ,T) that takes
two inputs: the source program P and a crash trace T . A crash
trace is produced by executing P on a single crashing input c . G
generates patches from fixing templates, and applies them to the
source. Patch application is predicated on certain information in the

program source, dynamic trace, or both.We refer to these predicates
as semantic cues that are sensitive to semantic properties of a bug
class. If the predicates are not satisfied, the program is not modified.

We concretely represent T̂ as a source-level patch. This has two
advantages. First, patches can be used as better bug reports [47],
supporting human triage and debugging. Second, patches can apply
without actually running the program, meaning static analyses (e.g.,
static symbolic execution) can also benefit from SCB.

We use GDB and ltrace to obtain dynamic crash traces. In principle,
any dynamic technique or analysis can enrich the space of semantic
cues to trigger program modification. We now describe in concrete
terms how we obtain T̂ for null dereferences and buffer overflows.

4.2 Null Dereferences
Null dereferences are typically fixed in one of two ways: correctly
initializing a variable or checking whether a variable is null before
dereferencing it [46, 49]. At a semantic level, a fix must enforce a
nonnull property for a variable that results in a null dereference
crash. We use the template in Figure 3 to approximate fixing a null
dereference. %%%PVAR%%% is a “hole” substituted with the offending
program variable.

1 if (%%%PVAR%%% == null) {

2 exit(101);

3 }

Figure 3: A template for null dereferences

The patch approximates error handling by exiting the program
on condition of PVAR being null (similar to the common C idiom
of return -1;). While simply exiting appears simplistic, it is in fact
appropriate for our objective to accurately bucket crashing input.
Consider if we chose a different strategy by returning a value or
initializing %%%PVAR%%%. Besides the difficulty of correctly inferring
appropriate values, we risk the possibility that the modified pro-
gram may continue executing and cascade errors or crash in other
unexpected ways. Without complete information of the root cause
to actually fix the bug, exiting is a conservative strategy: it acts as
an assertion ensuring the desired nonnull semantic property. The
correct fix in our motivating example supports this strategy: SQLite
conservatively aborts for error cases (but does some extra work
propagating the error up the call stack). Since the template can be
changed, our method does not preclude other possibilities; however,
our experiments show that the template in Figure 3 approximates
true fixes well enough for precise crash bucketing.

Template definition is only part of the larger problem: generating
the final patch T̂ also relies on identifying the appropriate program
variable and location to insert the patch. Semantic cues from a
GDB trace inform patch application: whether a variable dereference
at the point of crash is null. For example, our approximate patch
in Figure 1b checks the variable zSpan. The general procedure for
finding such crash-inducing variables works as follows:

(1) Attach GDB to the program, run it on the crashing input.
(2) Extract the source line and code reported at the crash.
(3) Parse the code for pointer dereference syntax (e.g., p->q).
(4) Working backwards, extract program variables that are deref-

erenced (e.g., extract p from p->q). Test, using GDB, whether
the variable is null in the debugger environment.
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(5) If the variable is null, return the variable and associated line
number. If not, move backwards a basic block and continue
from (3).

If the procedure succeeds, we substitute the template program
variable and insert the candidate patch just before the null deref-
erence. The null check could possibly be placed earlier, and a true
fix may indirectly prohibit a particular variable from being null (cf.
the correct SQLite fix in Figure 1a). Our decision is an inexpensive
compromise that we show works well in practice.

Before we use the patch for SCB, we first validate that the modi-
fied program no longer crashes for input c . The patch generation
procedure can produce more than one candidate patch, but our
implementation takes the first crash-fixing patch for bucketing.

4.3 Buffer Overflows
Buffer overflows are a class of memory corruption bugs commonly
discovered by fuzzers [7, 45]. Buffer overflows are typically fixed
by performing array bounds checking on memory accesses. Our
approximation to fixing buffer overflows thus focuses on array
length as the underlying semantic property to change. Inferring
array bounds can directly assist suggesting approximate fixes for
arbitrary overflow bugs, but generally requires additional anal-
ysis techniques and remains an open problem [19, 21, 24]. Our
approach is to truncate memory writes that may cause invalid ac-
cesses. Applications in failure-oblivious computing [44] and exploit
mitigation [33] use a similar mechanism.

Unsafe C library functions commonly trigger buffer overflows [19,
28, 33, 38] and persist in modern software.5 Our approach applies
templates for common C library functions, such as memcpy, strcpy,
sprintf, gets, strcat, etc.

We give an example template for memcpy in Figure 4; the templates
for other overflows are conceptually similar. We rewrite existing
calls and restrict the length of data copied to a default concrete value
of 1. Restricting data to only one byte approximates a conservative
angelic value [13] that is likely to lead to non-crashing program
termination. Note that other possibilities exist: we may, for example,
instrument the code to obtain actual angelic values observed at
runtime and use these to construct fixes. Our experiments show
that our current choice works well for precise bucketing.

1 // Modify a possible overflowing memcpy call

2 size_t angelic_length = 1;

3 memcpy(%%%DST%%%,%%%SRC%%%,angelic_length);

Figure 4: A template for memcpy. %%%DST%%% binds to the destination
argument for the original memcpy call, and %%%SRC%%% is binds to the
source argument.

Compared to approximating null fixes, overflow fixes do not
attempt to stop execution: placing a condition on the length of a
potential buffer proves problematic if we do not know its bounds.
Conversely, simply exiting before calling an unsafe function will
overfit to unique crashing inputs that would crash after the function.
In addition, while memory corruption occurs during execution of
the C library functions, the program only crashes at a later point:
once an invalid memory access occurs in the heap, or when a
5A strcpy vulnerability has been found in the Linux distribution as recent as 2017 [8].

corrupted return address is accessed on the stack.6 These behaviors
motivate different semantic cues compared to null dereferences,
and emphasize the importance of a configurable approach. For
buffer overflows, we implement a procedure to discover possibly
problematic library calls and resolve their location. A patch template
like Figure 4 then replaces the call. The steps are as follows:

(1) Use ltrace to obtain a trace of library calls from the crashing
program run.

(2) Working backwards, resolve the source location of library
calls in the trace for which we have fixing templates.

(3) Apply the template at the location and rerun the program
on the original crashing input.

(4) If the program no longer crashes, emit the approximate fixing
patch T̂ . Else continue from step (2).

Similar to null dereferences, we validate that the program no
longer crashes for any change done in step 3, and use the first
crash-fixing patch for bucketing.
Extending Semantic Crash Bucketing. The patch templates and
rules for patching are embedded in Python scripts and are easy to
change. Users can define their own patch templates and semantic
cues for patch application depending on the semantic properties
of the bug types or application-specific APIs. The GDB interface and
ltrace output is available in the scripting framework for customiza-
tion. Additional analysis tools can be integrated (e.g., valgrind),
though naturally this requires some extra effort.

5 EXPERIMENTAL DESIGN
Ultimately, we want to know how well approximate fixes T̂ dis-
tinguish unique crashes compared to (a) ground truth bucketing
by T (developer fixes) and (b) built-in fuzzer deduplication (the
previous state of the art). We conduct a controlled experiment with
real bugs for which we know the ground truth fix (Section 5.1).
Unfortunately, for the purposes of our experiments, state of the art
fuzzers do not all neatly decouple fuzzing campaigns from crash
deduplication (e.g., deduplication is invoked during fuzzing iter-
ations). Instead, we first generate, for each bug, an upper bound
of inputs that trigger the same bug (i.e., a “crash corpus”) which
aim to exercise different execution paths triggering the same bug
(Section 5.2). We then provide this crash corpus as input to each
fuzzer, and run a campaign for a fixed length (2 hours), forcing the
fuzzer to perform deduplication on the crash corpus during fuzzing
iterations (Section 5.3). We use the developer fix and apply SCB
to obtain the ground truth number of duplicate bug reports after
the campaign (which includes each fuzzer’s deduplication effort
on the corpus). We then apply SCB with approximate fixes and
measure (a) the difference from ground truth, and (b) deduplication
improvement over existing fuzzers.
Hardware.We ran our experiments on an Ubuntu 16.04 LTS server
with 2 Xeon E5-2699 CPUs and 20GB of RAM. Crash Corpus gener-
ation and fuzzing campaigns all ran on a single CPU core. We used
four cores to recompile when validating whether an approximate
fix stops a crash.

6Memory fence-posts can detect overwrites immediately, and don’t require a program
to SEGFAULT. This requires code instrumentation and extra shadow memory that hurts
fuzzing performance. Approximate fixes can be adapted accordingly, but we currently
do not assume such instrumentation.
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5.1 Bugs with Ground Truth
We evaluate on a sample of 18 null dereference and 3 buffer overflow
bugs in 6 real-world projects. For each bug we (a) extracted a ground
truth developer fix from the project and (b) sourced a crashing input
that triggers the bug (e.g., from online bug reports).
Projects with multiple bugs. SQLite is well-tested, popular data-
base software; w3m is a text-based web browser. For these projects,
we curated datasets of multiple bugs in a single revision. To be use-
ful, a deduplication strategy should correctly bucket crashing inputs
associated with a bug, but only that bug (and not those for other
bugs). That is, T̂ should be as close to Ideal Bucketing as possible,
giving strong assurance that T̂ does not overfit the input crashes.

Thus, we curated a dataset of fixes for 12 null dereference bugs
in a single SQLite revision. This is an onerous task because developer
fixes are often interspersed over long periods of time7 and fixing
patches cannot always be automatically applied to previous revi-
sions due to intermediate code changes. In addition, a single patch
may contain multiple fixes, which we must separate for each respec-
tive bug. We therefore manually minimized and backported patches
to support a large, controlled ground truth study on multiple bugs
in SQLite.

We selected w3m out of a list of projects with reported CVEs [6]
and found that it also has multiple null dereferences for which we
could find developer fixes and crashing inputs that work on the
same revision.8 We demonstrate SCB on four (4) null dereference
bugs on a single revision of w3m.
Other projects. We identify two null dereference bugs in differ-
ent versions of PHP, a large, popular project with well-documented
bugs and ground truth patches. We demonstrate SCB on real-world
overflow bugs in R, a large and popular software suite for statistical
computing; Conntrackd, a networking utility; and libmad, an MPEG
audio decoder.We apply SCB to a strcpy vulnerability in R. To demon-
strate real-world utility, we demonstrate SCB on two of our own
0-days found in previous fuzzing campaigns: a strcpy vulnerability
in Conntrackd and a memcpy vulnerability in libmad.9

5.2 Crash Corpus Generation
For each bug, we generate a large baseline corpus of crashing in-
puts from the initial crashing input, aiming to exercise different
execution paths triggering the same bug. We use this corpus to test
how well each fuzzer’s deduplication method copes with varying
behavior that trigger the same bug. Although a typical fuzzing
campaign begins with one or more non-crashing seed files as input,
it is hard to trigger a specific bug starting with arbitrary seed files:
the input search space is huge, and fuzzing nondeterminism means
it is difficult target specific areas of code. Isolating features in test
cases is one strategy for producing crashing test cases that may
correspond to the same bug [11, 23], but can take several days to
produce a large test set. Instead, we pursue a conceptually similar
approach, mutating an initially crashing input to explore differ-
ent execution paths that trigger a particular bug. We then use this
corpus as input to the other state-of-the-art fuzzers.

7The SQLite bugs were fixed over a period of four months.
8https://github.com/tats/w3m/issues?q=Null+pointer+is:closed
9Vulnerability disclosure is in progress with CERT under VRF#18-07-YMMKT and
VRF#18-07-XKJZJ .

To do this, we use the existing “Crash Mode” procedure imple-
mented in AFL-Fuzz [7]. The crash exploration procedure tracks
branches executed by the input, and mutates input to try and force
execution along different branches, where the objective function is
to preserve crashing behavior. Inputs that fail to explore interesting
paths or crash the program are discarded. We run crash exploration
for two hours per bug, producing crash corpora of related inputs
for each bug’s crashing seed file.

5.3 Evaluating Fuzzers
We compare to three state of the art fuzzers: AFL-Fuzz [7], CERT
BFF [2], and Honggfuzz [3]. These fuzzers are frequently used in
industrial and research settings [10, 45, 48] and implement differ-
ent deduplication techniques. In general, fuzzers do not decouple
fuzzing campaigns with crash deduplication; crashes are dedupli-
cated during fuzzer iterations. To trigger crash deduplication, we
seed fuzzing campaigns for each fuzzer with the crash corpus.

Industrial-strength fuzzers are highly configurable. We sought to
evaluate on default options across varying parameters in coverage-
based fuzzing, call stack depth, branch sequences, and point-of-
failure information. We evaluate on five configurations across the
three fuzzers:
AFL-Fuzz. We use AFL-Fuzz in its default configuration. AFL is
instrumentation-driven, and keeps track of branches taken dur-
ing fuzzing. Roughly, this means that AFL is sensitive to uniquely
executed paths. AFL’s default method for fuzzing uses the same
mechanism as “Crash Mode”, starting from a non-crashing seed and
with an objective of discovering arbitrary crashes. One key differ-
ence, however, is that “Crash Mode” does not deduplicate the crash
corpus by default. Therefore, to approximate AFL’s deduplication
in a real campaign (while avoiding a redundant fuzzing campaign),
we use AFL’s own minimization procedure directly on the crash
corpus, then remove equivalent duplicates.
CERT BFF.We run CERT BFF in its default configuration, which
uses a call stack hash based on, by default, the five last calls (frames)
leading to a crash. This number is configurable. Thus, for the second
configuration, we set BFF to use a call stack of just one frame
to determine bug uniqueness. BFF also invokes a built-in input
minimizer while fuzzing on-the-fly.
Honggfuzz.We run Honggfuzz in its default configuration, which
uses a call stack hash of seven calls. By default, Honggfuzz considers
information at the point of failure when a crash occurs (e.g., the last
known PC instruction and faulting address) to report uniqueness.
Honggfuzz can enable a feedback-driven fuzzing mode, provided
a program is compiled with the coverage instrumentation. In the
first configuration, we disable coverage; in the second, we enable
coverage.

Note that due to input mutation during the campaign, a fuzzer
may trigger a bug that we do not have a fix for. As a final post
processing step, we use the ground truth fix T to filter out only the
crashes fixed by T .

6 EXPERIMENTAL RESULTS
Our main result is that SCB with approximate fixes is just as pre-
cise as using the ground truth fix for 19 out of 21 bugs across all
configurations. Approximate fixes suffer only small imprecision,

https://github.com/tats/w3m/issues?q=Null+pointer+is:closed
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Table 1: Semantic Crash Bucketing results. For each fuzzer configuration, we show the Ground Truth number of duplicate
crashes reported by the fuzzer (GT) compared to the number of duplicate crashes reported using approximate fixes with SCB
(SCB+T̂ ). Crash Corpus is the number of crashing inputs that initially seed fuzzing campaigns for each configuration. For
example, Bug #1 (first row) in the HFuzz, GT column shows that HFuzz reports 10 duplicates (determined by the ground truth
fix), while the approximate fix (SCB+T̂ ) reports 0 duplicates. When SCB+T̂ reports 0 duplicates, it is as precise as ground truth.

Crash AFL BFF-5 BFF-1 HFuzz HFuzz-Cov
Project Type ID Corpus GT SCB+T̂ GT SCB+T̂ GT SCB+T̂ GT SCB+T̂ GT SCB+T̂

SQLite Null-deref

1 191 25 0 2 1 1 1 10 0 9 1
2 482 85 0 2 0 1 0 4 0 2 0
3 153 38 0 6 0 0 0 16 0 14 0
4 326 48 0 0 0 0 0 1 0 0 0
5 139 34 0 0 0 0 0 0 0 0 0
6 66 21 0 0 0 0 0 0 0 0 0
7 97 20 0 0 0 0 0 0 0 0 0
8 235 82 0 1 0 0 0 3 0 3 0
9 389 29 0 1 0 0 0 1 0 1 0
10 270 65 0 0 0 0 0 1 0 1 0
11 167 45 1 0 0 0 0 4 2 1 1
12 108 36 0 0 0 0 0 0 0 0 0

Subtotal 2,623 528 1 12 1 2 1 40 2 31 2

w3m Null-deref

13 458 103 0 25 0 1 0 75 0 77 0
14 545 23 0 0 0 0 0 0 0 0 0
15 507 36 0 0 0 1 0 6 0 4 0
16 525 11 0 0 0 1 0 0 0 0 0

Subtotal 2,035 173 0 25 0 3 0 81 0 81 0

PHP Null-deref 17 81 8 0 0 0 0 0 0 0 0 0
18 272 32 0 0 0 0 0 0 0 0 0

R Overflow 19 7 5 0 3 0 0 0 145 0 198 0

Conntrackd Overflow 20 25 0 0 0 0 0 0 770 0 427 0

libmad Overflow 21 138 8 0 1 0 0 0 1 0 0 0

Total 5,181 754 1 41 1 5 1 1,037 2 737 2

and perform significantly better deduplication compared to state-
of-the-art fuzzer deduplication in our experiments.
Speed and Project Size. Automatic patch generation for approx-
imate fixes is fast. Generating a patch from crashing input and
validating that it fixes the crash (including project recompilation)
takes just 18 seconds on average across all bugs. The minimum time
for patch generation and validation is 2 seconds, the maximum 49
seconds. Our sample uses large real-world projects, ranging from
12 KLOC to 1 MLOC.

6.1 Overall Results
Table 1 shows results. Each row corresponds to a unique bug, with
assigned “ID”. “Crash Corpus” is the number of crashing inputs
that initially seed the fuzzing campaigns. We deduplicate crash-
ing inputs for each bug using five fuzz campaign configurations
(Section 5): AFL, BFF-5 and HFuzz are default configurations for
the three fuzzers. BFF-1 configures BFF to use just one call in its
call stack hash;HFuzz-Cov turns on coverage instrumentation for
feedback fuzzing in HonggFuzz. “GT” is the Ground Truth num-
ber of duplicate reports for each respective configuration, which
we obtain using the actual developer fix T for each bug. Column

“SCB+T̂ ” is the number of duplicate bugs for a campaign reported
using approximate fixes with SCB.

Except for Bugs 1 and 11 in SQLite (discussed subsequently), ap-
proximate fixes are as precise as the ground truth fix across all
configurations. That is, approximate fixes detect and remove all
duplicates across all fuzzing configurations for 19 out of 21 bugs.
For projects SQLite and w3m containing multiple bugs, none of our
approximate patches suppress any other unique bug. In aggregate,
SCB with approximate fixes significantly reduces the number of du-
plicate crash reports compared to the default configurations: from
754 and 1,037 to just two duplicates for AFL and HFuzz, respec-
tively, and a reduction of 41 duplicates to one duplicate forBFF-5. In
practice, crash reports produced by fuzzers must be further triaged
manually. Our results show that applying approximate fixes can
automatically cut down on the time that an engineer spends on
further triage.

Ground truth fixes expose different “semantic sensitivities” of
error reporting across configurations and bug types. AFL-Fuzz on
average reports more duplicate bugs; this is expected due to its
sensitivity to unique execution paths, especially for null derefer-
ences. On the other hand, AFL and BFF report moderate numbers
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of duplicates for overflow bugs, whereas Honggfuzz reports hun-
dreds of crashes for two stack-based overflows (Bugs 19 and 20).
Honggfuzz’s default sometimes considers portions of overflowing
stack data to signal unique bugs. Bug 21 is a heap-based overflow,
and does not adversely affect Honggfuzz compared to stack-based
bugs. BFF-1 uses just one call to calculate a unique stack hash
per bug, and reports the least amount of duplicate bugs. Although
BFF-1 appears to perform well, the configuration is nonstandard
in practice because it has the caveat that unique bugs triggered
in the same function are easily missed. None of the bugs in our
sample exposes this weakness in the BFF-1 configuration, but it is
uncommon in real fuzzing campaigns. We include it as one extreme
example where coarse, aggressive deduplication can be performed
at the cost of potentially missing unique bugs.

Note that even for cases where a fuzzing configuration reports
no duplicates for a particular bug, approximate fixes do as well as
fuzzer deduplication, and strictly better for the majority of cases
where duplicates are reported. This emphasizes an important point:
approximate fixes uniformly bucket crashes via configurable sen-
sitivity to bug-class semantics. Our results show that lightweight
program transformation can effectively avoid imprecision due to
varying (yet broadly applied) choices made by built-in fuzzer dedu-
plication methods.

6.2 Project-Specific Results
SQLite. Approximate fixes for SQLite perform identically to ground
truth except for Bugs 1 and 11. Patches for Bugs 1 and 11 fail
to fix 7 crashing inputs out of a larger duplicate crash set of 62
crashes reported by fuzzers. We analyzed these inputs and found
that they generally trigger different crashing behavior downstream
in execution that our approximate patches do not catch (but which
correct patches handle earlier upstream). The implication is not
severe: SCB+T̂ only reports 7 duplicates over all configurations,
which is comparatively low compared to duplicate fuzzer reports.
w3m. SCB+T̂ perfectly simulates ground truth bucketing for w3m.
Our approximate fixes are semantically close to developer fixes:
each approximate patch checks the same program variable for NULL

as the corresponding developer patch. Interestingly, Bug 13 pro-
duces far more duplicate crashes compared to the other three bugs
across all configurations. This demonstrates a latent benefit of our
approach: SCB can reveal properties about buggy behavior (e.g., we
speculate that Bug 13 can be triggered along many execution paths
and different call chains compared to the other bugs).

We confirmed that crash bucketing withT and T̂ result in disjoint
buckets for multiple bugs in SQLite and w3m, and corresponds to the
assumptions of Ideal Bucketing (i.e., zero overlap of crashing
inputs of distinct bug fixes).
PHP.We applied SCB to one bug each in PHP v5 (CVE-2016-6292)
and v7 (CVE-2016-10162). SCB improves over AFL’s reports; the
other configurations do not report duplicates.
R and Conntrackd both contain strcpy overflow bugs. The R bug
is assigned CVE-2016-8714. We discovered a 0-day strcpy bug in
Conntrackd in our own fuzzing efforts. Since no developer fix exists
for a 0-day, we manually debugged to develop a ground truth patch.
We have disclosed the bug and recommended the patch to the
maintainers. As mentioned, Honggfuzz is particularly sensitive to

changes in the stack, especially overflow vulnerabilities affecting
the stack. Honggfuzz provides a way of blacklisting stack hashes
to compensate,10 but this option is disabled by default.
libmad. We also discovered a 0-day memcpy bug in libmad with our
own fuzzing. We developed our own patch to perform the correct
bounds checking on the length of bytes to copy. Interestingly, devel-
opers added a C assert statement before the memcpy call that checks
the correct bounds. However, assert statements are not compiled
in release versions and the bug results in a SEGFAULT. We used the
assert statement to inform a ground truth fix for checking the buffer
bound. Our deduplication gains is smaller for libmad, but remains
precise. Our libmad example shows that approximate fixes extend
to varieties of API calls in real world bugs with little effort.

6.3 Discussion
Merits of SCB and approximate fixes. Our approach can be lay-
ered on top of existing fuzzer deduplication methods or as a drop-in
replacement. In general, SCB opens the opportunity to parameterize
bucketing using targeted program transformation. One advantage
of automated patch generation is resilience to changes in unrelated
code across revisions. Concretely, we can generate an approximate
fix for any revision containing the bug. This is not true for static, de-
veloper written patches. As explained, we had to take careful effort
to isolate and backport existing patches for a ground truth study.

Approximate fixes can also improve fuzzing performance and
coverage [40]. Fuzzers are known to get stuck on shallow bugs
that restrict execution past a memory corruption bug.11 Our ap-
proach provides a lightweight, parameterizable solution to augment
fuzzing behavior and overcome such obstacles. We are currently
investigating these extensions and additional bug classes.
Limitations. Our approach requires some up front manual cost
to parameterize automated behavior for generating approximate
fixes. Complexity of the targeted bug class also bears on the diffi-
culty of specifying appropriate semantic cues and patch templates,
and various approximations will affect accuracy of semantic bug
containment. We demonstrated, however, that conceptually simple
patch templates and semantic cues work well for common bugs
found by fuzzers in real world programs. We speculate that the
approach generalizes further to, e.g., division-by-zero, arithmetic
overflows and use-after-free bugs. In general, we offer that one-off
specifications per bug class is competitive with per-fuzzer configu-
ration that preclude fine-grained semantic control.

Our time spent selecting projects to evaluate was dominated
by whether we could find ground truth fixes and crashing inputs.
Though the sample is small, every project that satisfied these criteria
has worked with our approach so far (i.e., we do not fail to find
an approximate fix), modulo the need for incremental refinements
in our approach (e.g., we added a preprocessing step that expands
macros in PHP to discover null dereference syntax when the program
crashes).

In our experiments we observe that both approximate and devel-
oper fixes address unique bugs with a single check. Conceptually,
we can imagine a case where some buggy behavior (e.g,. a null
pointer) may be checked once before branching on multiple paths,

10https://github.com/google/honggfuzz/pull/29
11https://github.com/google/fuzzer-test-suite/tree/master/libxml2-v2.9.2

https://github.com/google/honggfuzz/pull/29
https://github.com/google/fuzzer-test-suite/tree/master/libxml2-v2.9.2
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or alternatively along two different paths. Depending on the trans-
formation, crashing inputs may thus map to one or two buckets.
Our approach for null dereferences currently follows the second
strategy for bucketing (since we add the check close to where the
dereference occurs). In our experiments, this matched the behavior
of developer fixes. Note that we can extend our approach to use
first strategy (i.e., by searching for branch points and inserting
checks upstream) and even compare different strategies; exploring
and comparing such transformation strategies holds interesting
potential for future work.

Due to the difficulty of performing organic fuzzing campaigns
for known bugs, we purposely generate a crash corpus by mutating
existing crashing inputs. The generated crash corpus likely inflates
the number crashes that an organic campaign would encounter.
Nevertheless, the crash corpus serves as a useful upper bound to
quantify precision of default deduplication techniques in fuzzers
versus SCB.

We evaluate our approach on existing state of the art fuzzers
under default options and with small modifications to BFF and
Honggfuzz. We recognize that deduplication can be tweaked and
improved with additional parameters and post processing (e.g.,
stack hash blacklists), but we generally believe that fuzzers (like
other tools), should run with sensible defaults.

7 RELATEDWORK
Our approach relates generally to existing work in identifying bug
uniqueness and bucketing crashing inputs [14, 17, 18, 41]. Of partic-
ular interest, Chen et al. [14] propose a machine learning approach
that ranks interesting test cases for compiler fuzzer output, and use
fixing patches as ground truth to map crashing inputs to unique
bugs. Semantic Crash Bucketing draws on the idea of using ground
truth fixes to precisely identify unique bugs, obtaining similar pre-
cision to ground truth by automatically approximating fixes.

Recent work by Pham et al. [41] uses a clustering algorithm
that relies on a semantic characterization of inputs as constraints
over paths, with particular applicability to symbolic executors. Our
approach also promotes a semantic characterization of bugs, but
focuses on being sensitive to semantic properties of bugs them-
selves, rather than summarizing crashing inputs in terms of path
constraints. Broadly, current techniques manipulate and analyze
program input or otherwise instrument programs to obtain “read-
only” behavior of programs (such as input coverage [14], constraints
on input [41], or crash callstack [37]) to group crashes. To the best
of our knowledge, SCB is the first technique that appeals to program
modification for precisely grouping crashing input in the absence
of ground truth fixes.

Angelic debugging [13] seeks to modify programs by replacing
expressions with values, which bears conceptual similarity to our
approximating fixes for C library functions. Our problem focus
differs, however: we seek accurate crash bucketing in the presence
of duplicated or unreported bugs, while Angelic debugging seeks
to fix failing test cases while preserving existing passing test cases.

In terms of program modification, our work relates to failure-
oblivious computing [35, 44]. For instance, our rule-based appli-
cation of fix templates share similarities with the idea proposed

by Long et al. [35], who modify a program so that a null derefer-
ence does not cause it to crash. The objective of failure-oblivious
computing, however, is to make program execution resilient to
crash-inducing effects of bugs such as null dereferences or divide-
by-zero errors. In contrast, SCB seeks to isolate unique bugs by
selectively applying program transformation, rather than providing
an automatic catch-all technique for keeping a program running in
the interest of resilience. Syntactic patches promote the benefit of
“patches as better bug reports” [47] so that engineers can analyze
semantic effects that influence crash bucketing. Peng et al. [40]
show that applying program transformation while fuzzing can in-
crease program coverage and reveal more bugs; while our approach
focuses on accurate crash bucketing, our technique complements
this recent idea.

Fault localization [15, 25, 32, 43] and automatic program re-
pair [30, 33, 49] share similar high level goals for identifying bugs
and automatically fixing them. This work is broadly complemen-
tary to ours, providing techniques that can assist with accurately
identifying fault locations for patch placement, and appropriate
program transformations for different bug classes.

8 CONCLUSION
We introduced Semantic Crash Bucketing, a way to perform crash
bucketing using lightweight program transformation. We then de-
veloped an automatic approach that applies patch templates to
approximate real developer fixes to perform crash bucketing. Our
approach uses configurable rules (specified once per bug class) that
instantiate and apply patch templates based on crashing behavior.
Unlike coarse deduplication methods, rules and templates are sen-
sitive to bug-specific semantic properties and crashing behavior.
We developed approximate fixes for null dereferences and buffer
overflows. We performed a ground truth study comparing SCB and
approximate fixes to (a) true developer fixes and (b) crash dedupli-
cation of three state of the art fuzzers (AFL, BFF, and Honggfuzz).
Our results show that approximate fixes are competitive with crash
bucketing precision of true developer fixes, and performs strictly
better deduplication than all tested fuzzer configurations.
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